\[i\]
\[\require{color}\color{#2E8B57}\scriptsize{\begin{split} &(T_i ,\delta_i) = (6.43, 0) \\ w_i &= (\text{female}, \text{ D} \text{-peni} , 56) \end{split}}\]
\[\require{color}\color{#D2691E}\scriptsize{\begin{split} &(y_{1i}(t_{ij}), y_{2i}(t_{ij}) , y_{3i}(t_{ij})) = \\ (\log(\texttt{serBilir})_i&(t_{ij}), \texttt{albumin}_i(t_{ij}), \texttt{alkaline}_i(t_{ij})) \end{split}}\]
\[ \scriptsize\require{color} \begin{cases} g_l\left(E(y_{li}(t)|\boldsymbol{b}_{li})\right)=\colorbox{#D2691E}{$\color{white}m_{li}(t)$}= \colorbox{#D2691E}{$\color{white}\boldsymbol x_{li}^\top(t)\boldsymbol\beta_l + \boldsymbol z_{li}^\top(t)\boldsymbol b_{li}$}, \quad l=1,\dots,L \\ \\ h_i(t)= h_0(t)\exp \left[ \, \colorbox{#2E8B57}{$\color{white}\boldsymbol w_i^\top \boldsymbol\gamma$} + \sum_{l=0}^L\alpha_l\, \colorbox{#D2691E}{$\color{white}m_{li}(t)$} \, \right] \\ \end{cases} \]
\[ \require{color}\color{#D2691E}\boldsymbol{\mathcal{Y}_{j}^o(t)}=\left\{y_{lj}(t_{ik}) ; 0 \leq t_{ik} \leq t, k=1,\dots, n_{lj}, l=1,\dots,L\right\} \]
\[ \normalsize\require{color} \pi_{j}(u \mid t)=\operatorname{P}\left(T_{j}^* \leq u \mid T_{j}^*>t, \boldsymbol{\color{#D2691E}{\mathcal{Y}}_{j}^o(t)}, \textcolor{#2E8B57}{w_j}; \boldsymbol{\theta}\right) \]
\[\normalsize\require{color} h_i(t)= h_0(t)\exp \left[ \, \boldsymbol w_i^\top \boldsymbol\gamma + \sum_{l=0}^L\alpha_l\, m_{li}(t) \, \right]\]
\[\normalsize\require{color} M_1:\, h_i(t)= h_0(t)\exp \left[ \, \boldsymbol w_i^\top \boldsymbol\gamma + \alpha_1\, m_{1i}(t) \, \right]\]
\[\normalsize\require{color} M_2:\,h_i(t)= h_0(t)\exp \left[ \, \boldsymbol w_i^\top \boldsymbol\gamma + \alpha_2\, m_{2i}(t) \, \right]\]
\[\huge\vdots\]
\[\normalsize\require{color} M_L:\, h_i(t)= h_0(t)\exp \left[ \, \boldsymbol w_i^\top \boldsymbol\gamma + \alpha_L\, m_{Li}(t) \, \right]\]
Results
\[ \scriptsize\begin{cases} \log(\texttt{serBilir}(t_{ij})) & = \colorbox{#D2691E}{$\color{white}m_{1i}(t_{ij})$} + \varepsilon_{1i}(t_{ij}) \\ &= (\beta_0^1 + b_{0i}^1) + (\beta_{1}^1 + b_{1i}^1)t_{ij} + \beta_2^1\texttt{drug}_i + \varepsilon_{1i}(t_{ij}),\\ \texttt{albumin}(t_{ij}) & = \colorbox{#D2691E}{$\color{white}m_{2i}(t_{ij})$} + \varepsilon_{2i}(t_{ij}) \\ & = (\beta_0^2 + b_{0i}^2) + (\beta_1^2 + b_{1i}^2)t_{ij} + \beta_2^2\texttt{sex}_i + \varepsilon_{2i}(t_{ij}),\\ \texttt{alkaline}(t_{ij}) & = \colorbox{#D2691E}{$\color{white}m_{3i}(t_{ij})$} + \varepsilon_{3i}(t_{ij}) \\ & =(\beta_0^3 + b_{0i}^3) + (\beta_{1}^3 + b_{1i}^3)t_{ij} + \varepsilon_{3i}(t_{ij}),\\ \log\left( \frac{p(\texttt{ascites}(t_{ij})=1)}{1-p(\texttt{ascites}(t_{ij})=1)} \right) & = \colorbox{#D2691E}{$\color{white}m_{4i}(t_{ij})$} + \varepsilon_{4i}(t_{ij})\\ & = (\beta_0^4 + b_{0i}^4) + \beta_1^4t_{ij} + \varepsilon_{4i}(t_{ij}). \end{cases}\]
\[\scriptsize\begin{split} h_{i}\left(t \mid \colorbox{#D2691E}{$\color{white}\boldsymbol{\mathcal{Y}}_{i}(t)$}, \colorbox{#2E8B57}{$\color{white}\boldsymbol{w}_{i}$}\right) =h_{0}(t) \exp \big( & \colorbox{#2E8B57}{$\color{white}\gamma\texttt{drug}_i$}+ \alpha_1\colorbox{#D2691E}{$\color{white}m_{1i}(t_{ij})$} + \alpha_2\colorbox{#D2691E}{$\color{white}m_{2i}(t_{ij})$} \\ & \alpha_3\colorbox{#D2691E}{$\color{white}m_{3i}(t_{ij})$} + \alpha_4\colorbox{#D2691E}{$\color{white}m_{4i}(t_{ij})$}\big) \end{split}\]
\[\scriptsize\begin{cases} M1: & h_{i}\left(t \mid \colorbox{#D2691E}{$\color{white}\boldsymbol{\mathcal{Y}}_{i}(t)$}, \colorbox{#2E8B57}{$\color{white}\boldsymbol{w}_{i}$}\right) =h_{0}(t) \exp \big( \colorbox{#2E8B57}{$\color{white}\gamma\texttt{drug}_i$}+ \alpha_1\colorbox{#D2691E}{$\color{white}m_{1i}(t_{ij})$} \big) \\ M2: & h_{i}\left(t \mid \colorbox{#D2691E}{$\color{white}\boldsymbol{\mathcal{Y}}_{i}(t)$}, \colorbox{#2E8B57}{$\color{white}\boldsymbol{w}_{i}$}\right) =h_{0}(t) \exp \big( \colorbox{#2E8B57}{$\color{white}\gamma\texttt{drug}_i$}+ \alpha_2\colorbox{#D2691E}{$\color{white}m_{2i}(t_{ij})$} \big) \\ M3: & h_{i}\left(t \mid \colorbox{#D2691E}{$\color{white}\boldsymbol{\mathcal{Y}}_{i}(t)$}, \colorbox{#2E8B57}{$\color{white}\boldsymbol{w}_{i}$}\right) =h_{0}(t) \exp \big( \colorbox{#2E8B57}{$\color{white}\gamma\texttt{drug}_i$}+ \alpha_3\colorbox{#D2691E}{$\color{white}m_{3i}(t_{ij})$} \big) \\ M4: & h_{i}\left(t \mid \colorbox{#D2691E}{$\color{white}\boldsymbol{\mathcal{Y}}_{i}(t)$}, \colorbox{#2E8B57}{$\color{white}\boldsymbol{w}_{i}$}\right) =h_{0}(t) \exp \big( \colorbox{#2E8B57}{$\color{white}\gamma\texttt{drug}_i$}+ \alpha_4\colorbox{#D2691E}{$\color{white}m_{4i}(t_{ij})$} \big) \end{cases}\]
Results:
Results:
Results: